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Motivation, Goal, and Contribution
Motivation

» Successful material selection is critical in design automation;
« But requires time and expertise of designers;
 We have huge datasets of past designs; can we leverage them?

Goal

« Learn best design practices from existing Computer-aided Designs (CADS)
« Help guide and automate design processes for designers of various expertise

Contribution
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A systematic procedure to represent CAD models as assembly graphs
A GNN model for predicting materials on new assemblies
A scalable baseline for future works
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Graph Neural Networks,
Autodesk Fusion 360 Dataset
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Graph Neural Networks

Combination Aggregation

p® ék) (hl(;k—l)’g((;c) ({h\()kfl)’hgkfl)’ew . GN(V)}) GNNs use a neighborhood gggregation

approach, where representation of node

Is iteratively updated by aggregating

representations of neighboring nodes
and edges.

¥ = LsTM({B YV e N}, B = ReLu (WP Y 1))

GraphSAGE
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Autodesk Fusion 360 Assembly
Dataset

Content: 2D and 3D geometry data derived from
parametric CAD models

Source: Designs submitted by users of Autodesk
Fusion 360 to the Online Gallery

Application: Provide insights for learning how
people design

Motivation: Large and scalable
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Ref: https://github.com/AutodeskAlLab/Fusion360GalleryDataset
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Methodology

Framework,

Graph Representations of CAD,
Feature Encoding,

Building the Learning Framework
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Overall Framework

Graph Representation
Feature Encoding Construction Learning
Extract and encode the multi- Transform assemblies into their Leverage the structural and contextual
modal features from the dataset graphical representation and learning of GNNs to learning expressive
attach corresponding features representations for material prediction

Graph Construction

———————————————————————
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Assembly Graph Representation of CAD

Nodes

Assembly bodies, each
represented as a graph node

Body 1

Edges

Structural relationships
(e.g., contact / joint / hierarchical)

Features

1. Semantic Name: "Screw"
2. Material: "Steel - Satin"

Connection: Contact

» 3. Physical Properties: area + volume
4. Geometry: polygon mesh
5. Global Features

Shared Global Features

Global Context

Properties of entire assembly,
shared across all of its bodies

Graph Construction

1. Semantic Name: "Bolt"

2. Material: "Steel - Satin"

3. Physical Properties: area + volume
4. Geometry: polygon mesh

5. Global Features

Assembly

Body 2

Features

- o o o o o

»* Body Features Body Features  ~
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Edge Edge features
Features
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Edge
features

e ——
B o ) ) ) )

\ ’
Body Features ’

---------------------- -

Shared Global Features
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Feature Encoding
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The Learning Framework

GNN Lavers

For learning representation
embeddings (GraphSAGE)

The Learning Framework

Message Passing

For neighborhood feature
aggregation
(e.g., induce new node embeddings
from neighboring nodes)

Prediction

et

»
»~

GNN Layers  Message Passing

Aluminium Aluminium

MLP

For learning and producing
classification predictions
(Loss: weighted cross-entropy)

Note: material prediction
is formulated as a node-
level prediction task
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Experimental Evaluation

blation Experiment,
ully Algorithm-guided Prediction

artial Algorithm-guided Prediction
ser-guided Prediction
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Ablation Experiment - Feature Importance

* Observations:
1. Semantic names node feature is important
2. Hierarchical edges as introduced by users may cause complications

TABLE 1. FEATURE ABLATION RESULTS, MICRO-F; SCORE

NODE ABLATION EDGE ABLATION
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NODE NONE HIERARCHICAL
BoDY NAME 0.384 +£0.02) 0.416 +0.03
m OCCURRENCE NAME 0.399 £ 0.01 | 0.423 +£0.01
E SEMANTIC NAMES 0.317+0.05] 0.373 4+ 0.07
m BoDY PHYSICAL PROPERTIES 0.413+£0.02) 0.4254+0.01
< OCCURRENCE PHYSICAL PROPERTIES | 0.415 £ 0.02 | 0.392 4+ 0.06
BobDY GEOMETRY 0.394 £ 0.02 | 0.420 4+ 0.00
GLOBAL FEATURES 0.393 £ 0.04 ) 0.429 +£0.01
NONE 0.404 £0.02) 0.425+0.01
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Fully Algorithm-guided Prediction

» Description: Predicting the material IDs of all bodies inside an assembly
« Application: To fully automate material selection without user input ground truths

1.0

—— Ours
—— MVCNN
—— Linear
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Partial Algorithm-guided Prediction

« Description: Same as fully algorithm-guided prediction, but introducing
ground truths labels into a portion of assembly graphs (i.e., context nodes)

 Application: Simulating scenarios in which designers have access to
material labels of parts of their assemblies

Number of Layers

1 2 3 4 5 6 7 8

0.1 0402 0397 0.398 0.403 0.442 0.425 0.404 0.400
0.2 0386 0.421 0414 0435 0416 0450 0.389 0.385
0.3 0.381 0.393 0.415 0.431
0.4 0402 0399 0.435
0.5 0393 0.407 0.436
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User-guided Prediction

nw O
g e
c o
oo
8 ? Tor-K MATERIAL CLASS F; SCORE
o= . -
N §§ TIER 1 TIER 2 TIER 3 MICRO-(F,) WEIGHTED (F,) ° Descrlptlon Same as fUIIy algorlthm_
(Ngs a0 X DATE008 0922008 guided prediction, but introducing
@y v X X 0.546+0.01 0.527+0.01 X r
N EE L 0764003 07464003 ground truths categories  into
£ 736+0.03 0.746 4 0.
L _?c_,% v v v 07312004 0.757+0.03 assembly graph nodes
(o))
TR L‘l.:lg_ X X X 0.677 +£0.01  0.630+0.01
Ll)é% R v X X 0.684+0.10 0.677 +0.07 i Application: Avoid the limitation of
O VoY X 0BAIE0II 08514009 innovation by allowing the user to
© 4 v v v 0.897 £ 0.01 0.903 £0.01 . . - . . .
E|—§g input their design information into the
LU EE KoK X OTHE00L 07042000 learning framework, thereby leading
D :‘} 8 3 v X X 0.781 £0.12 0.763 £0.10 th d .
<._ L v v X 0.889 +0.12 0.891 £0.12 e eS|gn process
v v v 0.953+0.01 0.954 +0.01
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Conclusion

Conclusion and Future Efforts
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Conclusion and Future Efforts
Conclusion

A unified framework that:

Contributes to design automation

Predicts material of assembly parts through graph representation learning
Integrates a systematic workflow for feature extraction and encoding
Supports three experiments tailored to the needs of various designers

N

Limitations and Future Efforts

» Class imbalance: data augmentation
« Additional features: functional and behavioral
* Future directions: graph and edge predictions, similarity search, etc.
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Thank you!
(Note: Elliot and Bodia can add)
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