

Material Prediction For Design Automation Using Graph Representation Learning

Shijie Bian^{1,3} (Presenter), Daniele Grandi², Kaveh Hassani², Elliot Sadler¹, Bodia Borijin¹, Axel Fernandes¹, Andrew Wang⁴, Thomas Lu⁵, Richard Otis⁵, Nhut Ho¹, **Bingbing Li¹ (Corresponding Author)**

- 1. Autonomy Research Center for STEAHM, California State University, Northridge, USA
- 2. Autodesk Research, Autodesk Inc., San Rafael, USA
- 3. Department of Mathematics, University of California, Los Angeles, USA
- 4. Portola High School, Irvine, USA
- 5. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA

Motivation, Goal, Contribution

Background

Graph Neural Networks, Autodesk Fusion 360 Dataset

U3

01

Methodologies

Framework, Graph Representations of CAD, Feature Encoding, Building the Learning Framework

TABLE OF CONTENTS

Experimental Evaluation

Ablation Experiment, Fully Algorithm-guided Prediction Partial Algorithm-guided Prediction User-guided Prediction

05 Conclusion

04

Limitations and Improvements, Pointers for Future Efforts

The American Society of Mechanical Engineers & ASME®

O1 Introduction

Background, Motivation, and Contribution

The American Society of Mechanical Engineers « ASME®

Motivation, Goal, and Contribution

Motivation

- Successful material selection is critical in design automation;
- But requires time and expertise of designers;
- We have huge datasets of past designs; can we leverage them?

Goal

Conferences a Conference

- Learn best design practices from existing Computer-aided Designs (CADs)
- Help guide and automate design processes for designers of various expertise

Contribution

- A systematic procedure to represent CAD models as assembly graphs
- A GNN model for predicting materials on new assemblies
- A scalable baseline for future works

O2 Background

Graph Neural Networks, Autodesk Fusion 360 Dataset

The American Society of Mechanical Engineers & ASME®

Graph Neural Networks

GNNs use a neighborhood aggregation approach, where representation of node is iteratively updated by aggregating representations of neighboring nodes and edges.

Autodesk Fusion 360 Assembly Dataset

- **Content**: 2D and 3D geometry data derived from parametric CAD models
- **Source**: Designs submitted by users of Autodesk Fusion 360 to the Online Gallery
- Application: Provide insights for learning how people design
- Motivation: Large and scalable

Conferences Conference

The American Society of Mechanical Engineers & ASME®

O3 Methodology

Framework, Graph Representations of CAD, Feature Encoding, Building the Learning Framework

Feature Encoding

Extract and encode the multimodal features from the dataset

Overall Framework

Graph Construction

Transform assemblies into their graphical representation and attach corresponding features

Representation Learning

Leverage the structural and contextual learning of GNNs to learning expressive representations for material prediction

MLP

Assembly Graph Representation of CAD

Nodes

Assembly bodies, each represented as a graph node

Edges

Structural relationships (e.g., contact / joint / hierarchical)

Global Context

Properties of entire assembly, shared across all of its bodies

Semantic Names

TechNet

Keyword(s)

"fish"

"bottom"

"fin"

Semantic Name

"FishBottom-Fin (A1)"

Cleaning

"fish bottom fin a " TechNet-

Feature Encoding

similar

Geometric Features

MVCNN

Embedding Vector(s) (Dimension: 1 x 600)

[-0.11895822, -0.01115167, ..., -0.26246607]

[-0.13591647, 0.06455179, ..., 0.1948726]

[0.03579328, -0.20362604, ..., 0.09525189]

[-0.07302714, -0.05007531, ..., 0.00919473]

dissimilar

dissimilar

Numerical and Categorical

Standard scaler, One-Hot

The Learning Framework

GNN Layers N

For learning representation embeddings (GraphSAGE)

Message Passing

For neighborhood feature aggregation (e.g., induce new node embeddings from neighboring nodes)

MLP

For learning and producing classification predictions (Loss: weighted cross-entropy)

Note: material prediction is formulated as a nodelevel prediction task

04 **Experimental Evaluation**

Ablation Experiment, Fully Algorithm-guided Prediction Partial Algorithm-guided Prediction **User-quided Prediction**

ASME

echnical Conferences Igineering Conference

Engin

ernational Design Eng Computers and Inform

٠

Ablation Experiment – Feature Importance

Observations:

- 1. Semantic names node feature is important
- 2. Hierarchical edges as introduced by users may cause complications

NODE ABLATION	EDGE ABLATION		
NODE	NONE	HIERARCHICAL	
Body Name	0.384 ± 0.02	0.416 ± 0.03	
OCCURRENCE NAME	0.399 ± 0.01	0.423 ± 0.01	
Semantic Names	0.317 ± 0.05	0.373 ± 0.07	
BODY PHYSICAL PROPERTIES	0.413 ± 0.02	0.425 ± 0.01	
OCCURRENCE PHYSICAL PROPERTIES	0.415 ± 0.02	0.392 ± 0.06	
Body Geometry	0.394 ± 0.02	0.420 ± 0.00	
GLOBAL FEATURES	0.393 ± 0.04	0.429 ± 0.01	
None	0.404 ± 0.02	0.425 ± 0.01	

TABLE 1.FEATURE ABLATION RESULTS, MICRO-F1 SCORE

- Description: Predicting the material IDs of all bodies inside an assembly
- Application: To fully automate material selection without user input ground truths

chnical Conferences Jineering Conference

> esign Engi nd Informa

C

Partial Algorithm-guided Prediction

- **Description**: Same as fully algorithm-guided prediction, but introducing ground truths labels into a portion of assembly graphs (i.e., context nodes)
- Application: Simulating scenarios in which designers have access to material labels of parts of their assemblies

		Number of Layers							
		1	2	3	4	5	6	7	8
intext Nodes %	0.1	0.402	0.397	0.398	0.403	0.442	0.425	0.404	0.400
	0.2	0.386	0.421	0.414	0.435	0.416	0.450	0.389	0.385
	0.3	0.381	0.393	0.415	0.460	0.476	0.469	0.466	0.431
	0.4	0.402	0.399	0.435	0.462	0.475	0.477	0.474	0.459
ŭ	0.5	0.393	0.407	0.436	0.452	0.482	0.464	0.482	0.475

User-guided Prediction

Гор-к	MATERIAL CLASS			F_1 Score		
	Tier 1	TIER 2	Tier 3	MICRO- (F_m)	WEIGHTED (F_w)	
1	×	×	×	0.417 ± 0.04	0.392 ± 0.03	
	\checkmark	×	×	0.546 ± 0.01	0.527 ± 0.01	
	\checkmark	\checkmark	×	0.736 ± 0.03	0.746 ± 0.03	
	\checkmark	\checkmark	\checkmark	0.731 ± 0.04	0.757 ± 0.03	
2	×	×	×	0.677 ± 0.01	0.630 ± 0.01	
	\checkmark	×	×	0.684 ± 0.10	0.677 ± 0.07	
	\checkmark	\checkmark	×	0.841 ± 0.11	0.851 ± 0.09	
	\checkmark	\checkmark	\checkmark	0.897 ± 0.01	0.903 ± 0.01	
3	×	×	×	0.754 ± 0.01	0.704 ± 0.01	
	\checkmark	×	×	0.781 ± 0.12	0.763 ± 0.10	
	\checkmark	\checkmark	×	0.889 ± 0.12	0.891 ± 0.12	
	\checkmark	\checkmark	\checkmark	0.953 ± 0.01	0.954 ± 0.01	

- **Description**: Same as fully algorithmguided prediction, but introducing ground truths categories into assembly graph nodes
- Application: Avoid the limitation of innovation by allowing the user to input their design information into the learning framework, thereby leading the design process

nical Conferences eering Conference

05 Conclusion

Conclusion and Future Efforts

The American Society of Mechanical Engineers & ASME®

Conclusion and Future Efforts

Conclusion

A unified framework that:

- 1. Contributes to design automation
- 2. Predicts material of assembly parts through graph representation learning
- 3. Integrates a systematic workflow for feature extraction and encoding
- 4. Supports three experiments tailored to the needs of various designers

Limitations and Future Efforts

- Class imbalance: data augmentation
- Additional features: functional and behavioral
- Future directions: graph and edge predictions, similarity search, etc.

Thank you!

(Note: Elliot and Bodia can add)

The American Society of Mechanical Engineers « ASME®